
Indexing Repositories:

Pitfalls & Best Practices

Anurag Acharya

Web search & Scholar

§  Web search indexes all documents

– Scholar indexes scholarly articles

§  Web search needs document text

– Scholar also needs bibliographic info

§  Web search indexes each url independently

– Scholar groups all versions of a work

– Scholar result corresponds to entire group

Indexing how-tos

§  Web search: webmaster console

– Covers broad range of topics

– Provides detailed coverage information

– Crawl errors, server errors, breakages, etc

§  Scholar: inclusion help pages

– Linked from homepage

– Detailed guidelines, FAQs

What does indexing need?

§  List of all article urls

§  Ability to fetch article urls

§  What we index is what the user sees

§  Identify scholarly articles

§  Determine article metadata

Web search
Scholar

Scholar

Overview

§  Pitfalls and best practices

§  Measuring index coverage

§  Indexing analysis for repository platforms

§  Recommendations for repository platforms

§  Finally…

List of articles - I

§  Pitfall: Search-only interface

– Treesearch (US Forest service repository)

– BCIN (Conservation Information Network)

– No way to list all articles

– What we don’t know about, we can’t index

List of articles - II

§  Pitfall: List-based browse (click “Next”)

– Web scale crawlers are designed for volume

– Crawl all sites in parallel, per-site doesn’t scale

– Batches of urls, each batch assigned X hours

– One “Next” is scheduled in each batch

– 25 articles per “Next” => 100s of “Next”s

– DSpace/Fedora default browse

List of articles - III

§  Pitfall: Hard to find recent additions

– Eg: browse only for individual collections

– Collections structure mirrors org structure

– No date sort or recent additions list

– Some DSpace/Fedora instances skip “By Date”

List of articles - IV

§  Best practice: Year-month browse

– Linked from homepage - EPrints

– Helps crawlers as well as users

§  Best practice: Article sitemap

–  Include urls for ALL articles

– Linked from robots.txt or homepage

– DSpace if sitemaps are enabled

Fetch articles - I

§  Pitfall: AJAX used to fetch article text

– AGRIS (FAO), OSTI (Dept of Energy, fixed),
EUDML (European Math Library, fixed)

– Security issues limit execution within indexer

– Article text not seen by indexer

– AJAX for main content doesn’t help UI either

– User needs to wait either way

Fetch articles - II

§  Pitfall: Fetching fulltext requires POST

– Eg: POST for download button

– Possible reason: tracking downloads

– Dynamic urls with GET are just as easy to track

– POST forms mostly used for update ops

– Update account, upload article, delete info etc

– Crawlers skip POST to avoid causing updates

Fetch articles - III

§  Pitfall: Splitting theses into chapters

– Theses are large, can take a while to download

– Few years ago, network speeds were slower

– Less of an issue these days

–  Indexer can’t know how to put pieces together

–  Individual chapters aren’t citable

– Theses available as chapters indexed only in
web search, not indexed in Scholar

Fetch articles - IV

§  Pitfall: Fulltext hosted elsewhere

– Articles elsewhere not part of repository

–  If indexed, provide visibility to hosting site, not
repository

– Urls may or may not be available to crawlers

– Remote site may be roboted or restricted

– Embedded metadata can be associated only
with on-site fulltext (Scholar)

Fetch articles - IV

§  Best practice: Include text directly on page

– Avoid Javascript for fetching indexable text

– Javascript better for user interaction or
auxiliary features (stats, related articles, etc…)

– For main content, need to wait either way

§  Best practice: HTTP GET for article text

– Reserve POST for repository updates

Fetch articles - V

§  Best practice: Include full thesis versions

– Mark the full version (Scholar)

§  Best practice: Host fulltext locally

– Maximize visibility of repository

– Ensure availability to crawlers

– Ensure association of metadata with fulltext

What we index is what you see

§  Pitfall: Interstitial when clicking on fulltext

– Terms of use, registration

– Users expect to see article

–  If shown other pages, click back immediately

– Learn to avoid clicking on repository in future

– Seen as cloaking and removed by web search

What we index is what you see

§  Pitfall: Redirect PDF to landing page

– Possibly to help with usage analytics

– Users clicking on PDF links are looking for
fulltext

–  If no PDF, they click back, learn to stay away

– Seen as cloaking and removed by web search

What we index is what you see

§  Best practice: Skip interstitials for users
clicking on search results

– One-time terms-of-use doesn’t work either

– Search users see few articles from a repository

§  Best practice: PDF urls get fulltext PDF

– For analytics, server API can replace Javascript

Scholar specific guidelines

§  Scholar indexes scholarly articles, books,
reports, theses, etc…

– Need to identify bibliographic information

– Title, authors, where/how published, when

– Need to determine if in-scope for Scholar

Is it scholarly - I

§  Pitfall: No machine-readable metadata

– Need article metadata for determination

– Automated analysis of HTML/PDF, formats vary

– HTML with CSS is, ahem, versatile

– Analysis of scanned articles depends on OCR

– Machine-readable metadata via metatags

– PURE, Islandora, VTLS, Treesearch

Is it scholarly - II

§  Best practice: Embed machine-readable
metadata as metatags on landing page

– We recommend Highwire Press metatags

– Provide sufficient detail for scholarly articles

– Structured fields for jrnl/vol/iss/pages/year

– citation_pdf_url to associate with PDF fulltext

– Dublin Core as last resort (key fields missing)

Article metadata - I

§  Pitfall: Drop authors from other institutions

– Usually caused by interaction with CRIS

– CRIS’s tend to focus on local authors

§  Pitfall: Reorder author list

– Often due to treating authors as a set, not list

§  Pitfall: Include all contributors as authors

– Advisors, thesis committees common case

Article metadata - II

§  Pitfall: Use upload date as publication date

– Often via bulk uploads (no date specified)

– “Some date is better than no date…”

– Missing data can be inferred from elsewhere

– Wrong data is much harder to override

– Scholar tries to auto-identify problem sites

– Drops sites with large number of broken dates

Article metadata - III

§  Pitfall: Add cover pages to fulltext PDF

– Usually branding, download timestamp etc

– Often breaks automated metadata extraction

– Article titles don’t usually appear on 2nd/3rd pg

– Have seen up to three leading pages inserted

– Can result in systematic drop in coverage

Article metadata - IV

§  Best practice: Use author list as in article

– Other versions not suitable for repository

– Local-authors: suitable only in CRIS context

– Only authors are “authors”, others are ack’ed

§  Best practice: No default publication dates

– Publication date is either specified or empty

– Add separate field for upload date

Article metadata - V

§  Best practice: Host PDF articles as-is

– Avoid cover pages

– Fulltext articles match many more queries

– Systematic drop of fulltext has huge impact on
visibility

Measuring coverage

§  Pitfall: Using result count for site: queries

– Does NOT work in any web search service

– Result count is an broad approximation

–  Intended to help with query formulation

– Version grouping in Scholar another issue

– site: on Scholar applies to main links

– Doesn’t cover “all versions”

Measuring coverage - II

§  Pitfall: Using result count of filetype queries

– Counts for all queries broad approximations

– Filetype: queries not suitable for Scholar

– Scholar groups all versions

–  Individual versions not returned as results

– Not possible to limit to particular version type

Measuring coverage - III

§  Best practice: Random sampling

– Pick a small random sample of article titles

– Use intitle:”<TITLE>” as the query

– Web search: check matching results

– Scholar: also check “all XX versions” page

Analysis of repository platforms

§  Indexing features

– Article list, fetching articles, identifying
scholarly articles, article metadata

§  Platforms

– EPrints, DSpace, Digital Commons, PURE

EPrints

§  Indexing features: zero config since 2007

– Almost all instances have indexing features

§  List all articles: year-month browse

§  Machine-readable metadata as metatags

– Metadata model handles articles & theses

§  EPrints repositories well-indexed

DSpace

§  Indexing features: require configuration

– Highwire press metatags default since 1.7

§  List of articles: “Next” clicks by default

§  Metadata model is general

– Journal article details require customization

§  Instances with recent release well-indexed

– Large new repositories can take a while

Digital Commons

§  Indexing features: some configuration

§  List of articles: by collection

– Recent additions by default, no sitemap

§  Machine-readable metadata as metatags

– Metadata model handles articles & theses

§  DC repositories often well-indexed

– Large new repositories can take a while

PURE

§  Indexing features: require custom upgrade

§  List of articles: no crawl-friendly browse

– No sitemap

§  No machine-readable metadata by default

§  Limited coverage for PURE-only repositories

– Some sites use PURE for CRIS + a repository

Recommendations for platforms

§  Indexing features that just work

– No configuration needed to enable

– Features wanted by almost all repositories

– Blocking indexing is easy via robots.txt

 User-agent: *

 Disallow: /

– Auto-enable huge success for OJS!

Recommendations for platforms -II

§  Comprehensive & efficient browse

– Year-month browse linked from homepage

– OR sitemap linked from robots.txt

– Timely indexing of large repositories

– Rapid pick up of new additions

Recommendations for platforms - III

§  Embed machine-readable metadata

– Decouple UI from content

– Customize HTML pages without losing
coverage

– Use citation_pdf_url to associate metadata
with fulltext

Recommendations for platforms - III

§  Metadata model suited for scholarly articles

– Journal articles: journal/volume/issue/pages

– Conf articles: conf name/pages

– Dissertations: issuing institution

§  Separate upload date & publication date

– No default publication date

Recommendations for platforms - IV

§  Author lists exactly as in the article itself

– Separate CRIS and repository features

– Separate fields for non-author contributors

§  Server-side analytics API support

– Enables analytics for non-HTML items

Recommendations for platforms - V

§  Automated analysis to help identify
metadata problems

– Too many articles with same publication date

– Too many PDFs with sparse covers

– Too many titles with common prefix/suffix
•  “Analysis of Magic Rites – University of X”

– Author names with known affiliation keywords
•  “John Doe, University of Y”

Finally…

§  A few key features enable indexing

– Repositories with these features indexed well

§  Indexing features should be on by default

– All repositories want to be well-indexed

§  Shared goal: make it easy to find research

– Contact us if you run into issues

– Would love to help identify/fix problems

